Première S

Problèmes du second degré

Définition:

On appelle polynôme du second degré ou de degré 2 toute fonction définie sur \mathbb{R} par $x \mapsto ax^2 + bx + c$, où a, b, c sont des réels, $a \neq 0$.

On parle également souvent de trinôme.

Les valeurs qui annulent le polynôme ont nommées racines du polynôme.

Forme canonique:

Tout polynôme de degré 2 peut s'écrire sous forme canonique $a(x - \alpha)^2 + \beta$.

On appelle **discriminant** du trinôme le nombre $\Delta = b^2 - 4ac$.

- Si $\Delta > 0$, le polynôme a deux racines : $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.
- Si $\Delta = 0$, le polynôme a une seule racine : $x' = \frac{-b}{2a}$ (dite racine double).
- Si $\Delta < 0$, le polynôme n'a pas de racine.

<u>Pté</u>: Lorsque le polynôme a deux racines, leur somme est $S = -\frac{b}{a}$ et leur produit $P = \frac{c}{a}$.

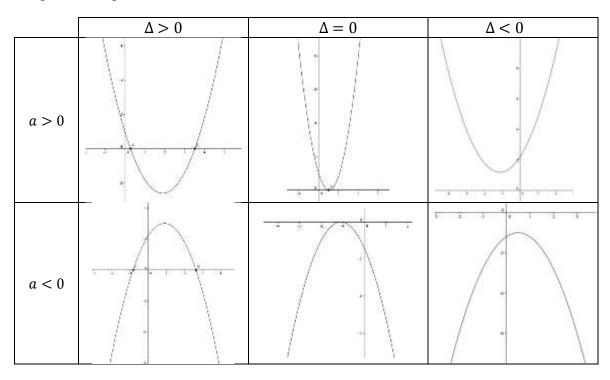
Factorisation:

- Si $\Delta > 0$, le trinôme se factorise sous la forme $P(x) = a(x x_1)(x x_2)$
- Si $\Delta = 0$, le trinôme se factorise sous la forme : $P(x) = a(x x')^2$
- Si Δ < 0, le trinôme ne se factorise pas dans \mathbb{R} .

Signe du trinôme :

- Si $\Delta > 0$, le trinôme est du signe de a à l'extérieur des racines, du signe de a entre les racines.
- Si $\Delta = 0$, le trinôme est du signe de *a* sauf pour $x' = -\frac{b}{2a}$, où il s'annule.
- Si Δ < 0, le trinôme est du signe de a.

Interprétation graphique : Selon le signe de a et celui de Δ , six cas différents peuvent se présenter :



La parabole a pour **sommet** le point d'abscisse $-\frac{b}{2a}$, et pour **axe de symétrie** la droite d'équation $y = -\frac{b}{2a}$.

Remarque: l'abscisse du sommet est la demi-somme des deux racines (lorsqu'il y en a).

1èreS Chapitre 2

Complément: Fonctions polynômes

On appelle fonction **polynôme** toute fonction définie sur \mathbb{R} par $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ où les a_0, a_1, \dots, a_{n-1} sont des réels quelconques appelés **coefficients** du polynôme et a_n est un réel non nul. n est le **degré** du polynôme. $a_i x^i$ est **le terme de degré** i (monôme).

Polynôme nul : si pour tout entier i, on a $a_i = 0$, le polynôme est appelé polynôme nul. Pour tout réel x, on a alors P(x) = 0.

<u>Théorème</u>: L'écriture d'un polynôme est unique.

Egalité de deux polynômes :

Deux polynômes P et Q sont égaux si :

- Ils ont le même degré;
- Les coefficients des termes de même degré sont égaux.

Application: Déterminer α et β tels que $3x^2 - 2x - 5 = \alpha(x - \alpha)^2 + \beta$

Opération sur les polynômes :

- La somme de deux polynômes est un polynôme de degré inférieur ou égal au degré max (degP; degQ).
- Le produit de deux polynômes P et Q est un polynôme de degré égal à $degP \times degQ$.

Racines d'un polynôme:

Soit P un polynôme et α un réel. α est une **racine** du polynôme P si $P(\alpha) = 0$. Dans ce cas, P(x) se factorise par $(x - \alpha)$ ie il existe un polynôme Q de degré degQ = degP - 1 tel que $P(x) = (x - \alpha)Q(x)$.

Application : Soit P le polynôme défini sur \mathbb{R} par $P(x) = 3x^3 - 4x^2 + 7x - 6$. Calculer P(1). En déduire une écriture de P comme produit d'un polynôme de degré 1 et d'un polynôme de degré 2.

Première S Polynômes - Applications:

1- Equations bicarrées:

On appelle **équation bicarrée** toute équation de la variable x, ne contenant que des termes en x^4 , x^2 , et des termes constants.

On considère l'équation (E) : $3x^4 + 2x^2 - 5 = 0$, à résoudre dans \mathbb{R} . On effectue un changement de variable afin de retrouver une équation de degré 2.

Soit
$$X = x^2$$
, avec $X \ge 0$.

L'équation (E) est équivalente à (E') : $3X^2 + 2X - 5 = 0$.

Donc le discriminant est $\Delta = 4 + 60 = 64$.

D'où les solutions de (E') : $X' = \frac{-2-8}{6} = -\frac{10}{6} = -\frac{5}{3}$ et $X'' = \frac{-2+8}{6} = 1$. Le changement de variable nous impose de rejeter la première solution car elle est négative.

Il nous reste donc à résoudre l'équation suivante : $X = x^2 \Leftrightarrow x^2 = 1 \Leftrightarrow x = 1$ ou x = -1.

L'équation (E) : $3x^4 + 2x^2 - 5 = 0$ admet donc comme ensemble solution dans \mathbb{R} : $S = \{-1, 1\}$

2- Equations irrationnelles :

Pour deux réels a et b, dire que $\sqrt{a} = b \Leftrightarrow \begin{cases} a = b^2 \\ b \ge 0 \end{cases}$

On considère l'équation (E), à résoudre dans IR : $\sqrt{13x^2 + 10x - 23} = 3x + 1$. On a les équivalences suivantes :

$$\sqrt{13x^2 + 10x - 23} = 3x + 1$$

$$\Leftrightarrow \begin{cases} 3x + 1 \ge 0 \\ 13x^2 + 10x - 23 = (3x + 1)^2 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + 1 \ge 0 \\ 13x^2 + 10x - 23 = 9x^2 + 6x + 1 \end{cases} \Leftrightarrow \begin{cases} 3x + 1 \ge 0 \\ 4x^2 + 4x - 24 = 0 \end{cases}$$

Résolvons l'équation $4x^2 + 4x - 24 = 0$: $\Delta = 400$ et $x_1 = \frac{-4-20}{8} = -3$, $x_2 = \frac{-4+20}{8} = 2$.

D'où:
$$\sqrt{13x^2 + 10x - 23} = 3x + 1 \Leftrightarrow \begin{cases} x \ge -\frac{1}{3} \\ x = 2 \text{ ou } x = -3 \end{cases} \Leftrightarrow x = 2.$$

L'équation (E) $\sqrt{13x^2 + 10x - 23} = 3x + 1$ admet pour ensemble solution : $S = \{2\}$.

- 3- Equation avec paramètres: Soit m un réel fixé. On considère la fonction trinôme de degré 2 définie sur \mathbb{R} par : $f(x) = mx^2 + 4x + 2(m-1)$.
 - **a**) Déterminer le nombre de racines de ce polynôme en fonction de la valeur du paramètre *m*.
 - **b**) Quelles valeurs peut prendre m pour que f(x) soit strictement négatif sur \mathbb{R} ?
 - (a) Le discriminant du trinôme est $\Delta = 16 4 \times 2(m-1) \times m = 16 8(m^2 m) = -8m^2 + 8m + 16 = 8(-m^2 + m + 2)$. Le signe de Δ est le même que celui du trinôme de variable $m: (-m^2 + m + 2)$. Or le discriminant de ce trinôme est : $\delta = 1 + 8 = 9$. Il admet donc deux racines $m_1 = \frac{-1-3}{-2} = 2$ et $m_2 = \frac{-1+3}{-2} = -1$ et son signe est alors donné par le tableau :

•	•					
m	$-\infty$	_	1	2		+∞
$\Delta = 8(-m^2 + m + 2)$		-	+		-	

Le trinôme *f* admet :

- deux racines si $\Delta > 0$ ie pour $m \in]-1; 2[$,
- une racine double si $\Delta = 0$ ie pour m = -1 ou m = 2,
- et il n'a pas de racines si $\Delta < 0$ ie pour $m \in]-\infty$; $-1[\cup]2$; $+\infty[$.
- (b) f sera strictement négatif sur $\mathbb R$ à deux conditions :
 - Son discriminant est négatif : donc $m \in]-\infty$; $-1[\cup]2$; $+\infty[$.
 - Le coefficient de son terme de degré 2 est négatif : m < 0.

Par conséquent, pour $m \in]-\infty$; -1[.