Chapitre 9: Conditionnement et indépendance

1-Probabilité conditionnelle:

1.1. Probabilité de A sachant B:

A et B sont deux événements d'une même expérience aléatoire avec $P(A) \neq 0$. La probabilité que B se réalise sachant que A est réalisé, est le nombre noté $P_A(B)$ et défini par

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

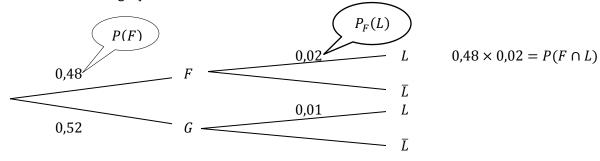
On utilise très souvent cette formule afin de déterminer la probabilité d'une intersection :

$$P(A \cap B) = P_A(B) P(A) = P_B(A)P(B)$$

1.2. Modélisation par un arbre: Exemple:

Dans une population, la probabilité de naissance d'un garçon est 0,52. On sait que 2% des filles et 1% des garçons naissent avec une luxation congénitale de la hanche.

Représenter cette situation par un arbre, en nommant Fl'événement « naissance d'une fille », G « naissance d'un garçon » et L « le nouveau-né a une luxation de la hanche ».



Règles d'utilisation d'un arbre pondéré:

- Loi des nœuds: la somme des probabilités inscrites sur les branches issues d'un même nœud est égale à 1.
- La probabilité de l'événement représenté par un chemin est égale au **produit des probabilités** inscrites sur les branches de ce chemin.

1.3. Formule des probabilités totales:

Dans un univers Ω , on appelle **système complet d'événements** un ensemble d'événements de probabilités non nulles, deux à deux disjoints, dont la réunion est égale à Ω . Il s'agit d'une **partition de** Ω .

<u>Théorème</u>: Soit $A_1, A_2, ..., A_n$ un système complet d'événements de l'univers Ω , et B un événement quelconque de Ω .

On a
$$P(B) = P(A_1) \times P_{A_1}(B) + P(A_2) \times P_{A_2}(B) + \dots + P(A_n) \times P_{A_2}(B)$$
.

2-Indépendance:

2.1. Cas de deux événements:

A et B sont deux événements d'une même expérience aléatoire. Les événements A et B sont dits **indépendants** si $P(A \cap B) = P(A) \times P(B)$.

<u>Propriété</u>: Les événements A et B sont **indépendants** (avec $P(A) \neq 0$) si et seulement si $P_A(B) = P(B)$.

<u>Théorème</u>: Si A et B sont indépendants alors A et \bar{B} sont indépendants également.

<u>Dém: ROC</u>

On a $A = (A \cap B) \cup (A \cap \overline{B})$. Donc, ces deux événements étant incompatibles, on a :

 $P(A) = P(A \cap B) + P(A \cap \overline{B}).$

D'où $P(A \cap \overline{B}) = P(A) - P(A \cap B) = P(A) - P(A)P(B) = P(A)(1 - P(B)) = P(A)P(\overline{B})$. D'où la conclusion.

Ex: On considère une urne contenant 10 boules numérotées, de couleur : les boules 1, 2, 3, 4 et 5 sont rouges, les boules 6, 7 et 8 sont bleues et les boules 9 et 10 sont vertes. On tire simultanément deux boules au hasard.

Les événements A « Les deux boules sont de la même couleur » et B « les deux boules portent des numéros impairs » sont-ils indépendants ?

2.2. Expériences indépendantes:

 E_{\times} : On lance n fois de suite une pièce équilibrée. Calculer en fonction de n la probabilité, notée p_n , de l'événement A: « obtenir au moins un pile ».

Lors de la répétition ou de la succession d'expériences indépendantes, la probabilité d'une suite d'événements est égale au produit des probabilités de chaque événement.

2.3. Indépendance de deux variables aléatoires:

On considère deux variables aléatoires X et Y définies sur un univers Ω et prenant respectivement les valeurs x_i , $i \in [|1;n|]$ et y_i , $j \in [|1;p|]$.

Dire que les deux variables X et Y sont indépendantes signifie que pour tout i et tout j les événements « $X = x_i$ » et « $Y = y_j$ » sont indépendants.

Ex:

On considère un jeu de 32 cartes. On tire au hasard une carte dans le paquet. X est la variable aléatoire qui prend la valeur 1 si la carte tirée est une dame, 0 dans le cas contraire. Y est la variable aléatoire qui prend la valeur 1 si la carte tirée est un cœur, 0 dans le cas contraire.

- **1.** Déterminer la loi de *X* puis celle de *Y* .
- **2.** Déterminer la loi conjointe du couple (X;Y) sous forme de tableau.
- **3.** Les variables X et Y sont-elles indépendantes ?
- **1.** Loi de *X* :

x_i	1	0
$P(X=x_i)$	$\frac{1}{8}$	$\frac{7}{8}$

Loi de Y:

y_j	1	0
$P(Y=y_j)$	$\frac{1}{4}$	$\frac{3}{4}$

2. Loi du couple (X;Y):

Y	P(X=0)	P(X=1)	Loi de Y
P(Y=0)	$\frac{21}{32}$	$\frac{3}{32}$	$\frac{3}{4}$
P(Y=1)	$\frac{7}{32}$	$\frac{1}{32}$	$\frac{1}{4}$
Loi de X	7 8	$\frac{1}{8}$	1

3. On a $P(X = x_i) \cap (Y = y_j) = P(X = x_i)P(Y = y_j)$. Donc X et Y sont indépendantes.