NOM:.....

DS1 - Suites

Exercice 1: (3 points)

Réciter le théorème des gendarmes pour les suites.

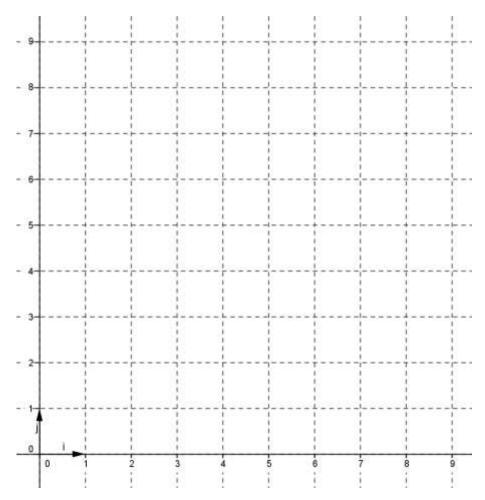
Exercice 2: (7 points)

Soit
$$(u_n)$$
 définie sur $\mathbb N$ par $\begin{cases} u_0=0 \\ u_{n+1}=\frac{3}{4}u_n+\frac{2}{9}. \end{cases}$

- 1. Démontrer par récurrence que cette suite est croissante.
- **2.** Démontrer par récurrence que pour tout entier naturel $n, u_n \leq 1$.
- 3. Que peut-on en conclure sur la convergence de cette suite?

Exercice 3 : (12 points) On définit une suite (u_n) par $u_0=3$ et $u_{n+1}=\frac{7}{4}u_n-\frac{3}{2}$.

1. En traçant les droites $\Delta: y = \frac{7}{4}x - \frac{3}{2}$ et d: y = x, représenter les termes u_1, u_2 et u_3 sur l'axe des abscisses du repère ci-dessous.



- **2.** On pose à présent pour tout entier naturel $n: v_n = u_n 2$.
 - (a) Montrer que (v_n) est géométrique. Donner ses éléments caractéristiques.
 - (b) Déterminer alors l'expression de v_n puis celle de u_n en fonction de n.
 - (c) Donner le sens de variations de la suite (u_n) (récurrence inutile).
 - (d) Etudier alors la convergence de la suite (u_n) .
- **3.** (a) Compléter l'algorithme ci-dessous pour qu'il affiche la plus petite valeur n_0 telle que $u_n \ge 100$:

Variables

u, N: nombres
Initialisations

N prend la valeur 0

u prend la valeur

Début

Tant que

u prend la valeur

N prend la valeur

Fin tant que

Afficher

Fin

(b) A l'aide de la calculatrice, déterminer n_0 .

Exercice 4: (8 points)

Dans chaque cas, dire si la proposition est Vraie ou fausse en justifiant votre réponse.

1. On considère une suite (u_n) strictement décroissante et minorée par 2.

Proposition 1: la suite (u_n) converge vers 2.

2. On pose pour tout entier naturel n:

$$S_n = \sum_{k=0}^n \left(\frac{2}{3}\right)^k$$

Proposition 2 : la suite (S_n) converge vers 3.

- **3. Proposition 3 :** Toute suite bornée est convergente.
- **4.** On considère une suite (u_n) de termes tous non nul et on pose $v_n = -\frac{2}{u_n}$.

Proposition 4 : Si (u_n) est divergente, alors (v_n) converge vers 0.