1ère S - DM2 - Corrigé.

Premier exercice:

- 1- (a) Le discriminant de l'équation est $\Delta = 16 4m \times 2(m-1) = -8m^2 + 8m + 16$. L'équation f(x) = 0 a une solution unique pour $\Delta = 0$, ie pour $-8m^2 + 8m + 16 = 0$. Le discriminant de cette équation est : $\delta = 576$. Les deux solutions sont : $m_1 = \frac{-8-24}{-16} = 2$ et $m_2 = \frac{-8+24}{-16} = -1$. L'équation f(x) = 0 a une solution unique pour m = -1 et pour m = 2.
 - Pour m = -1, $f(x) = -x^2 + 4x 4$ qui a pour racine : x = 2.
 - Pour m = 2, $f(x) = 2x^2 + 4x + 2$ qui a pour racine : x = -1.
- (b) L'équation possède deux solutions distinctes lorsque son discriminant est strictement positif. D'après la question précédente, il s'agit donc des valeurs de m telles que $m \in]-1; 2[-\{0\}]$ (en effet le terme de degré 2 de Δ est négatif, donc Δ est strictement positif entre ses deux racines).
- 2- Pour que f(x) soit strictement négatif pour tout réel x il faut que deux conditions soient remplies : son discriminant doit être strictement négatif : $\Delta < 0$. D'après 1-(b), on aura $\Delta < 0$ ssi $m \in]-\infty$; $-1[\cup]2$; $+\infty[$.
- son terme de degré 2 doit avoir un coefficient négatif : m < 0.

Ces deux conditions nous donnent ensemble comme ensemble des valeurs de m pour lesquelles f(x) soit strictement négatif pour tout réel $x : m \in]-\infty$; -1[.

Deuxième exercice:

1- Déterminons d'abord l'équation de Δ_m . Cette droite a pour équation y=mx+b où m est son coefficient directeur et b son ordonnée à l'origine. De plus, $A \in \Delta_m$. Donc les coordonnées de A vérifient l'équation de la droite ie $y_A = mx_A + b$ soit 3 = m + b.

Donc b = 3 - m et Δ_m a pour équation y = mx + 3 - m.

Pour rechercher les abscisses des points d'intersections de \mathscr{F} et Δ_m , il faut résoudre l'équation $f(x) = g_m(x)$ où f est la fonction trinôme de degré 2 représentée par \mathscr{F} et g_m la fonction affine représentée par Δ_m .

Soit:
$$x^2 - 4x + 5 = mx + 3 - m \Leftrightarrow x^2 - 4x - mx + 2 + m = 0 \Leftrightarrow x^2 - (4 + m)x + 2 + m = 0$$
 (1).

2- Le discriminant de cette équation est $\Delta = (4+m)^2 - 4(2+m) = 16 + 8m + m^2 - 8 - 4m = m^2 + 4m + 8$. Pour déterminer le signe de ce discriminant, nous devons étudier la valeur de son propre discriminant : $\delta = 16 - 32 = -16$.

On a $\delta < 0$, donc Δ est de signe constant, celui du coefficient de son terme de degré 2:1. Donc $\Delta > 0$ pour toute valeur de m. L'équation (1) admet donc toujours deux solutions distinctes : \mathscr{F} et Δ_m ont toujours deux points d'intersection distincts.

3- ⇒ Condition nécessaire :

Supposons que A soit le milieu de $[M_1M_2]$.

Or on sait que le milieu I de $[M_1M_2]$ est situé sur l'axe de la parabole d'équation : $y = x^2 - (4+m)x + 2 + m$ (cf cours). Son abscisse est donc donnée par $x_I = -\frac{b}{2a} = \frac{4+m}{2}$. On a donc les équivalences suivantes : $x_A = x_I$ ssi $\frac{4+m}{2} = x_A$ ssi $\frac{4+m}{2} = 1$ ssi m = -2.

Donc si A est le milieu de $[M_1M_2]$, alors m = -2.

← Condition suffisante :

Réciproquement, si m=-2, alors Δ_{-2} a pour équation y=-2x+5. On a vu que comme m=-2 alors nécessairement $x_I=x_A$. Vérifions ici que les ordonnées sont égales. L'ordonnée de A est 3.

Dans le cas où m = -2 l'équation (1) s'écrit $x^2 - 2x = 0$ qui a pour solutions évidentes 0 et 2.

Donc M_1 a pour abscisse 0, et ordonnée : $y_1 = -2 \times 0 + 5 = 5$.

De même M_2 a pour abscisse 2, et ordonnée : $y_1 = -2 \times 2 + 5 = 1$.

Le milieu *I* de $[M_1M_2]$ a donc pour ordonnée : $y_I = \frac{5+1}{2} = 3 = y_A$.

Donc lorsque m = -2, A est bien le milieu de $[M_1M_2]$.