TS Juin 2013

TD: La méthode d'Euler

Partie 1 : Un problème de Leibniz : approche de la notion d'équation différentielle.

On cherche une fonction f strictement positive et dérivable sur \mathbb{R} dont la courbe représentative \mathcal{C} dans un repère orthonormal donné $(0; \vec{\imath}; \vec{\jmath})$ a la propriété suivante : quel que soit le point M de la courbe \mathcal{C} , la tangente en M à \mathcal{C} coupe l'axe des abscisses en un point T tel que $\overrightarrow{TH} = \vec{\imath}$.

- **1.** a) Pourquoi par hypothèse, $f'(x_0)$ est-il différent de zéro ?
 - **b)** Trouver une équation de la tangente en M à \mathcal{C} .
 - c) Déduisez-en que T a pour abscisse $x_0 \frac{f(x_0)}{f'(x_0)}$
- **2.** a) Démontrer que $\overrightarrow{TH} = \overrightarrow{\iota}$ équivaut à $f'(x_0) = f(x_0)$.
 - **b)** Déduisez-en que f convient si et seulement si f' = f.

<u>Conclusion</u>: pour déterminer f, on est conduit à résoudre une équation dont l'inconnue est une fonction et dans laquelle figure la dérivée première de la fonction. Une telle équation est <u>dite équation différentielle</u>.

Partie 2 : La méthode d'Euler.

A l'équation différentielle f' = f, on ajoute la condition f(0) = 1.

La méthode d'Euler permet de construire une solution approchée sur l'intervalle [0;1]. Pour un entier naturel n non nul, on découpe l'intervalle en n intervalles de longueur $\frac{1}{n}$ et on note $t_0=0$ et pour tout entier k, $t_{k+1}=t_k+\frac{1}{n}$, donc $t_n=1$. On cherche à approcher la courbe en déterminant les valeurs approchées y_0,y_1,y_2,\ldots,y_n de $f(t_0),f(t_1),\ldots,f(t_n)$ à l'aide de leurs approximations affines.

1. Calcul de y_1 : Comme on sait que f(0) = 1, on pose $y_0 = 1$.

Justifier que l'approximation affine de $f\left(t_0+\frac{1}{n}\right)$ est $1+\frac{1}{n}$. On choisit $y_1=1+\frac{1}{n}$.

- **2.** Calcul de y_{k+1} : On suppose que l'on a construit $y_0, y_1, ..., y_k$.
- a) Justifier que l'approximation affine de $f\left(t_k+\frac{1}{n}\right)$ est $f(t_k)\left(1+\frac{1}{n}\right)$. On choisit $y_{k+1}=y_k\left(1+\frac{1}{n}\right)$.
- **b)** Démontrer par récurrence sur l'entier naturel k que $y_k = \left(1 + \frac{1}{n}\right)^k$.
- 3. Utilisation d'un tableur : Il s'agit de calculer les valeurs approchées pour différentes valeurs de n.
- a) Pour n = 10, reproduire et compléter le tableau ci-dessous afin d'obtenir toutes les valeurs cherchées.
- b) A l'aide de l'assistant graphique (ou de la liste de points sur geogebra), faites afficher les points de coordonnées $(t_k; y_k)$ pour obtenir la courbe ci-dessous.
- c) Modifier la feuille de calcul pour obtenir les valeurs pour n=20, puis n=30 et observer à chaque fois la courbe obtenue. Quelles remarques peut-on faire ?

